一、一范数和无穷范数区别?
其这里实就是规定的范数函数的p值。
这里的无穷和1,就是取的不同p值。
0范数——向量中非0的元素的个数
1范数,为绝对值之和。
2范数,就是通常意义上的模。即距离。
无穷范数——向量中最大元素的绝对值。
对于无穷范数的说明:当p取无穷大时,
最终只与元素中绝对值最大的元素有关了,即
范数(norm)是数学中的一种基本概念,在泛函分析中,范数是一种定义在赋范线性空间中函数,满足相应条件后的函数都可以被称为范数。
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。半范数反而可以为非零的矢量赋予零长度。
举一个简单的例子,在二维的欧氏几何空间 R就可定义欧氏范数。在这个矢量空间中的元素常常在笛卡儿坐标系统中被画成一个从原点出发的带有箭头的有向线段。每一个矢量的欧氏范数就是有向线段的长度。
其中定义范数的矢量空间就是赋范矢量空间。同样,其中定义半范数的矢量空间就是赋半范矢量空间。
有限维空间上的范数具有良好的性质,主要体现在以下几个定理:
性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标的连续函数。
性质2(Minkowski定理):有限维线性空间的所有范数都等价。
性质3(Cauchy收敛原理):实数域(或复数域)上的有限维线性空间(按任何范数)必定完备。
性质4:有限维赋范线性空间中的序列按坐标收敛的充要条件是它按任何范数都收敛。
二、证明无穷范数是矩阵范数?
矩阵范数的定义有1-范数、2-范数及无穷范数,无穷范数是矩阵范数的一种定义。
三、矩阵的一范数和无穷范数?
矩阵的一范数大于等于矩阵的无穷范数。
四、2范数与1范数和无穷范数乘积的大小比较?
一、向量的范数
首先定义一个向量为:a=[-5,6,8, -10]
1.1 向量的1范数
向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29,MATLAB代码实现为:norm(a,1);
1.2 向量的2范数
向量的2范数即:向量的每个元素的平方和再开平方根,上述a的2范数结果就是:15,MATLAB代码实现为:norm(a,2);
1.3 向量的无穷范数
1.向量的负无穷范数即:向量的所有元素的绝对值中最小的:上述向量a的负无穷范数结果就是:5,MATLAB代码实现为:norm(a,-inf);
2..向量的正无穷范数即:向量的所有元素的绝对值中最大的:上述向量a的负无穷范数结果就是:10,MATLAB代码实现为:norm
五、1范数2范数计算公式?
一、求法
1-范数:║A║1 = max{ ∑|ai1|,∑|ai2|,……,∑|ain| }(列和范数,A每一列元素绝对值之和的最大值),其中∑|ai1|第一列元素绝对值的和∑|ai1|=|a11|+|a21|+...+|an1|,其余方法相同);
2-范数:║A║2 = A的最大奇异值 =(max{ λi(A^H*A) })^{1/2}(其中A^H为A的转置共轭矩阵)。
二、区别:
1、意义不同:1-范数是指向量(矩阵)里面非零元素的个数,2-范数(或Euclid范数)是指空间上两个向量矩阵的直线距离。
2、求法不同:1-范数║A║1 = max{ ∑|ai1|,∑|ai2|,……,∑|ain| },2-范数:║A║2 = A的最大奇异值 = (max{ λi(A^H*A) })^{1/2}。
扩展资料:
矩阵范数中矩阵A和B及所有实数a,满足以下性质:
1、||A||>=0;
2、||A||=0 iff A=O(零矩阵);(1和2可统称为正定性)
3、||aA||=|a|·||A||;(齐次性)
4、||A+B||<= ||A|| + ||B||;(三角不等式)
5、||AB||<=||A|| ||B||。(相容性)
六、一范数与无穷范数比较大小?
欧式空间的一范数和无穷范数是等价的。
七、无穷范数和其他范数之间的关系?
无穷范数,无穷大无穷小所有的数,其他范数范围比较小,是一部分。
八、向量的范数?
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。
注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。
九、范数怎么算?
一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。所以矩阵范数通常也称为相容范数。如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即非负性;齐次性;三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
十、范数的性质?
范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;
②齐次性;
③三角不等式。
它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。
半范数可以为非零的矢量赋予零长度