主页 > 芯片 > 信号的传输速率咋求?

信号的传输速率咋求?

一、信号的传输速率咋求?

数据传输速率--每秒传输二进制信息的位数,单位为位/秒,记作bps或b/s。

计算公式: S=1/T log2N(bps) ⑴

式中 T为一个数字脉冲信号的宽度(全宽码)或重复周期(归零码)单位为秒;

N为一个码元所取的离散值个数。

通常 N=2K,K为二进制信息的位数,K=log2N。

N=2时,S=1/T,表示数据传输速率等于码元脉冲的重复频率。

2)信号传输速率--单位时间内通过信道传输的码元数,单位为波特,记作Baud。

计算公式: B=1/T (Baud) ⑵

式中 T为信号码元的宽度,单位为秒.

信号传输速率,也称码元速率、调制速率或波特率。

由⑴、⑵式得: S=B log2N (bps) ⑶

或 B=S/log2N (Baud) ⑷

log2=0.30102999566398,是自然对数,和数学里的log2一样

二、传输速率的Modem传输速率?

  什么是数据通信的传输速率   传输速率是指每秒钟设备或网络之间能够传输的二进制信息位数,它的单位是bps(bit per second)。波特率越高,数据传输率自然也就越大。   Modem传输速率   最高传输速率是指MODEM理论上能达到的最高传输速率,即每秒钟传送的数据量大小,以bps(bit per second,比特/秒)为单位。在这里主要是指拨号连接速度,即服务器到Modem的数据传输速率,只表明Modem与ISP连接的一瞬间可以连接的速率。标准的56K Modem,“56K”指的就是建立网络连接时的速率,它只是一个理论值,在最理想的情况下才可能达到。由于电话线路的噪音是不可以避免的,因此在实际使用中,连接速度是不可能达到56K的,只要在42K-52K之间都可以认为是56K的Modem。   拨号连接速度会根据外界情况的不同而有不同的表现结果:   1)与服务器执行协议有关   在服务器执行相应协议的情况下,Modem才可能有较高的连接速度。   2)与线路的质量有关   Modem工作时先以最高速率连接,然后会根据连接质量迅速调整连接速率,所以线路好坏是影响Modem连接速率的一个关键因素。与服务器及其接入端有关,由于大型ISP的网络技术和硬件设备会不断更新,如果连接上性能较好的服务器,就会得到最流畅的数据流,否则则相反,这也是每次接入的速率都会有所变化的原因。性能不同的MODEM在同等条件的线路和ISP下,其连接速度是不同的,所以MODEM的好坏也是一个比较重要的条件。   MODEM的最高传输速率可分为9.6Kbps,14.4Kbps,28.8Kbps,33.6Kbps以及56Kbps,目前常见的都是56Kbps的,其余的低速MODEM都已经被淘汰掉了。   无线局域网的传输速率   无线局域网产品的传输速度是指设备在某种网络协议标准下的数据发送和接收的能力。这个数值取决于设备依赖于何种标准支持和环境等因素。   常见无线协议标准下的设备数据传输速率如下:   网卡传输速率   网卡速率是指网卡每秒钟接收或发送数据的能力,单位是Mbps(兆位/秒)。由于存在多种规范的以太网,所以网卡也存在多种传输速率,以适应它所兼容的以太网。目前网卡在标准以太网中速度为10Mbps,在快速以太网中速度为100Mbps,在千兆以太网中速度为1000Mbps,最近又出现了万兆网卡。   目前主流的网卡主要有10Mbps网卡、100Mbps以太网卡、10Mbps/100Mbps自适应网卡、1000Mbps千兆以太网卡以及最新出现的万兆网卡五种。对于一般家庭用户选购10M或者10Mbps/100Mbps自适应网卡即可。   (1)10Mbps网卡   10Mbps网卡主要是比较老式、低档的网卡。它的带宽限制在10Mbps,这在当时的ISA总线类型的网卡中较为常见,目前PCI总线接口类型的网卡中也有一些是10Mbps网卡,不过目前这种网卡已不是主流。这类事宽的网卡仅适应于一些小型局域网或家庭需求,中型以上网络一般不选用,但它的价格比较便宜。   (2)100Mbps网卡   100Mbps网卡在目前来说是一种技术比较先进的网卡,它的传输I/O带宽可达到100Mbps,这种网卡一般用于骨干网络中。目前这种带宽的网卡在市面上已逐渐得到普及,但它的价格稍贵,注意一些杂牌的100Mbps网卡不能向下兼容10Mbps网络。   (3)10Mbps/100Mbps网卡   这是一种10Mbps和100Mbps两种带宽自适应的网卡,也是目前应用最为普及的一种网卡类型,最主要因为它能自动适应两种不同带宽的网络需求,保护了用户的网络投资。它既可以与老式的10Mbps网络设备相连,又可应用于较新的100Mbps网络设备连接,所以得到了用户普遍的认同。这种带宽的网卡会自动根据所用环境选择适当的带宽,如与老式的10Mbps旧设备相连,那它的带宽就是10Mbps,但如果是与100Mbps网络设备相连,那它的带宽就是100Mbps,仅需简单的配置即可(也有不用配置的)。也就是说它能兼容10Mbps的老式网络设备和新的100Mbps网络设备。   (4)1000Mbps以太网卡   千兆以太网(Gigabit Ethernet)是一种高速局域网技术,它能够在铜线上提供1Gbps的带宽。与它对应的网卡就是千兆网卡了,同理这类网卡的带宽也可达到1Gbps。千兆网卡的网络接口也有两种主要类型,一种是普通的双绞线RJ-45接口,另一种是多模SC型标准光纤接口。   (5)10000Mbps网卡   这类万兆网卡是最新推出的速度最快的网卡,不过还不是主流技术,对于高端用户可以选用。

三、rs485的信号传输速率可达?

RS485最大无线传输距离为1200米。实践证明:采用阻抗匹配、低衰减的专用电缆可以达到1800米!超过1200米,可加中继器(最多8只),这样传输距离接近10Km。 智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断。

究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。

最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。随后出现的RS485解决了这个问题。

四、数字信号的传输速率用什么表示?

1.波特率  在串行通信中,用“波特率”来描述数据的传输速率。所谓波特率,即每秒钟传送的二进制位数,其单位为bps(bits per second)。它是衡量串行数据速度快慢的重要指标。有时也用“位周期”来表示传输速率,位周期是波特率的倒数。国际上规定了一个标准波特率系列:110、300、600、1200、1800、2400、4800、9600、14.4Kbps、19.2Kbps、28.8Kbps、33.6Kbps、56Kbps。 例如:9600bps,指每秒传送9600位,包含字符的数位和其它必须的数位,如奇偶校验位等。 大多数串行接口电路的接收波特率和发送波特率可以分别设置,但接收方的接收波特率必须与发送方的发送波特率相同。通信线上所传输的字符数据(代码)是逐为位传送的,1个字符由若干位组成,因此每秒钟所传输的字符数(字符速率)和波特率是两种概念。在串行通信中,所说的传输速率是指波特率,而不是指字符速率,它们两者的关系是:假如在异步串行通信中,传送一个字符,包括12位(其中有一个起始位,8个数据位,2个停止位),其传输速率是1200b/s,每秒所能传送的字符数是1200/(1+8+1+2)=100个。

2.发送/接收时钟  在串行传输过程中,二进制数据序列是以数字信号波形的形式出现的,如何对这些数字波形定时发送出去或接收进来,以及如何对发/收双方之间的数据传输进行同步控制的问题就引出了发送/接收时钟的应用。 在发送数据时,发送器在发送时钟(下降沿)作用下将发送移位寄存器的数据按串行移位输出;在接收数据时,接收器在接收时钟(上升盐)作用下对来自通信线上串行数据,按位串行移入移位寄存器。可见,发送/接收时钟是对数字波形的每一位进行移位操作,因此,从这个意义上来讲,发送/接收时钟又可叫做移位始终脉冲。另外,从数据传输过程中,收方进行同步检测的角度来看,接收时钟成为收方保证正确接收数据的重要工具。为此,接收器采用比波特率更高频率的时钟来提高定位采样的分辨能力和抗干扰能力。 3. 波特率因子  在波特率指定后,输入移位寄存器/输出移位寄存器在接收时钟/发送时钟控制下,按指定的波特率速度进行移位。一般几个时钟脉冲移位一次。要求:接收时钟/发送时钟是波特率的16、32或64倍。波特率因子就是发送/接收1个数据(1个数据位)所需要的时钟脉冲个数,其单位是个/位。如波特率因子为16,则16个时钟脉冲移位1次。 例:波特率=9600bps,波特率因子=32,则 接收时钟和发送时钟频率=9600×32=297200Hz。4.传输距离  串行通信中,数据位信号流在信号线上传输时,要引起畸变,畸变的大小与以下因素有关: 波特率——信号线的特征(频带范围)  传输距离——信号的性质及大小(电平高低、电流大小)  当畸变较大时,接收方出现误码。  在规定的误码率下,当波特率、信号线、信号的性质及大小一定时,串行通信的传输距离就一定。为了加大传输距离,必须加调制解调器。

五、信号带宽与数据传输速率?

所谓 1M 宽带,其实是指 1Mbps (兆比特每秒),亦即 1 x 1024 / 8 = 128KB/sec,但这只是理论上的速度,实际上则要再扣约 12% 的信息头标识等各种控制讯号,故其传输速度上限应为 112KB/sec 左右。

宽带与实际速度的大致对应关系如下:

1 M =112 KB/s

2 M =225 KB/s

8 M =901 KB/s

10 M =1126 KB/s

六、传输速率最低的传输介质?

在常用的传输介质中,带宽最小、信号传输衰减最大、抗干扰能力最弱的一类传输介质是同轴电缆。

同轴电缆(Coaxial Cable)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。

七、gpu的传输速率?

1、显存带宽。即显卡显存颗粒与GPU(GTX750芯片)之间的数据交换的速度,显存带宽=显存等效频率x位宽/8,即80GB/s。 2、I/O带宽。即显卡GPU与CPU或主板芯片组之间的数据交换速度,GTX730是PCI-E 3.0 16x(16个通道),理论带宽32GB/s。但受限于GPU本身的性能,即便是最高端的显卡,实际使用中也很难达到理论带宽值。 3、这个问题主要用来考量显卡的I/O带宽,由于实际使用中,显卡远没达到PCI-E 3.0 16x理论带宽值(只有极少数情况下的峰值带宽或有达到)。因此,将显卡插到带宽较低的PCI-E 2.0/1.0甚至PCI-E 8x插槽中,对显卡的实际性能影响也极为有限(实际性能的损耗不到1%)。 4、但如果插到带宽更低的PCI-E 4X插槽中,性能就会有大约5%左右的损失。如果插到PCI-E 1X插槽中(比如通过转接卡将独立显卡安装到笔记本上只有1个通道的mini PCI-E 1x插槽上),性能大约会有30%左右损失。

八、网线的传输速率?

传输速率可达10 Gbps。

1)一类线:主要用于传输语音(一类标准主要用于八十年代初之前的电话线缆),不同于数据传输。

2)二类线:传输频率为1MHZ,用于语音传输和最高传输速率4Mbps的数据传输,常见于使用4MBPS规范令牌传递协议的旧的令牌网。

3)三类线:在ANSI和EIA/TIA568标准中指定的电缆,该电缆的传输频率16MHz,用于语音传输及最高传输速率为10Mbps的数据传输主要用于10BASE--T。

4)四类线:该类电缆的传输频率为20MHz,用于语音传输和最高传输速率16Mbps的数据传输主要用于基于令牌的局域网和 10BASE-T/100BASE-T。

5)五类线:该类电缆增加了绕线密度,外套一种高质量的绝缘材料,传输率为100MHz,用于语音传输和最高传输速率为100Mbps的数据传输,主要用于100BASE-T和10BASE-T网络。这是最常用的以太网电缆。

6)超五类线:超5类具有衰减小,串扰少,并且具有更高的衰减与串扰的比值(ACR)和信噪比(Structural Return Loss)、更小的时延误差,性能得到很大提高。超5类线的最大传输速率为250Mbps。

7)六类线:该类电缆的传输频率为1MHz~250MHz,六类布线系统在200MHz时综合衰减串扰比(PS-ACR)应该有较大的余量,它提供2倍于超五类的带宽。六类布线的传输性能远远高于超五类标准,最适用于传输速率高于1Gbps的应用。六类与超五类的一个重要的不同点在于:改善了在串扰以及回波损耗方面的性能,对于新一代全双工的高速网络应用而言,优良的回波损耗性能是极重要的。六类标准中取消了基本链路模型,布线标准采用星形的拓扑结构,要求的布线距离为:永久链路的长度不能超过90m,信道长度不能超过100m。

8)超六类线:超六类线是六类线的改进版,同样是ANSI/EIA/TIA-568B.2和ISO 6类/E级标准中规定的一种非屏蔽双绞线电缆,主要应用于千兆位网络中。在传输频率方面与六类线一样,也是200~250 MHz,最大传输速度也可达到1 000 Mbps,只是在串扰、衰减和信噪比等方面有较大改善。

9)七类线:该线是ISO 7类/F级标准中最新的一种双绞线,它主要为了适应万兆位以太网技术的应用和发展。但它不再是一种非屏蔽双绞线了,而是一种屏蔽双绞线,所以它的传输频率至少可达500 MHz,是六类线和超六类线的2倍以上,传输速率可达10 Gbps。

九、rs485的信号传输距离可达1200米,传输速率可达?

RS485最大无线传输距离为1200米。实践证明:采用阻抗匹配、低衰减的专用电缆可以达到1800米!超过1200米,可加中继器(最多8只),这样传输距离接近10Km。 智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断。

究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。

最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。

随后出现的RS485解决了这个问题。

十、卫星物联网的传输速率

随着技术的不断发展,卫星物联网的传输速率得以显著提升。传统的卫星通信系统往往受限于其较低的传输速率,但随着新一代卫星技术的应用,卫星物联网的传输速率迎来了革命性的变化。

卫星物联网的传输速率改善

卫星物联网的传输速率得以改善的关键在于卫星技术的创新。现代卫星通信系统采用了更高频段、更先进的调制解调技术以及更高效的信道编解码算法,从而显著提高了数据传输效率和速率。

通过利用新一代高通量卫星,卫星物联网可以实现更快的数据传输,更低的时延以及更强的抗干扰能力。这为卫星物联网的应用提供了更加可靠和稳定的数据传输保障。

卫星物联网的传输速率优势

卫星物联网的传输速率优势突显,不仅可以满足大规模物联网设备对数据传输的需求,还能够支持高清视频、远程医疗、智能交通等应用场景的高速数据传输。

与地面网络相比,卫星物联网的传输速率不受地理位置和地形限制,可以实现全球覆盖,为偏远地区、海洋和空中的物联网设备提供可靠的连接。

卫星物联网的传输速率未来发展

随着卫星技术的不断创新和进步,卫星物联网的传输速率将继续提升。未来,卫星物联网有望实现更高效的频谱利用、更低的时延以及更高的传输速率,以满足日益增长的物联网应用需求。

同时,卫星物联网的传输速率提升也将推动物联网产业的发展和创新,促进智能城市、智能交通、智能农业等领域的快速发展。

相关推荐